Deep-learning Demand Prediction Models (Pytorch)

We present pytorch implementation of the popular deep-learning models in the following git repository:
Github: https://github.com/cdsnlab/demand-pytorch

demand-pytorch

Results

We report MAE in Beijing taxi flow prediction dataset for each prediction steps.

Modelbj-flow (15 min)bj-flow (30 min)bj-flow (1 hour)
ConvLSTM
STResNet
DeepSTN

We report RMSE and MAPE in NYC taxi flow prediction dataset.

ModelRMSEMAPE
DMVST-Net

Getting Started

Data

  • Beijing Taxi: download bj-flow.pickle from Google Drive
  • NYC Taxi:

Environment

conda create -n $ENV_NAME$ python=3.7
conda activate $ENV_NAME$

# CUDA 11.3
pip install torch==1.11.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 
# Or, CUDA 10.2 
pip install torch==1.11.0+cu102 --extra-index-url https://download.pytorch.org/whl/cu102 
pip install -r requirements.txt

Train

If config file not specified, load $MODEL_NAME$_config.py by default.

python train.py --model $MODEL_NAME$ --ddir $PATH_TO_DATASET$ --dname $DATASET_NAME$

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top