Spatio-temporal Traffic Prediction Models (Keras)

Github: https://github.com/SuminHan/Traffic-UAGCRNTF

We share our code for deep-learning research from Sumin Han, Youngjun Park, Minji Lee, Jisun An, and Dongman Lee, “Enhancing Spatio-temporal Traffic Prediction through Urban Human Activity Analysis,” has been accepted to 32nd ACM International Conference on Information and Knowledge Management  Paper Code

This code contains not only our proposed UAGCRN and UAGCTransformer, but also DCRNN and GMAN which are baselines.

Model Architecture

Code

This installation command worked with our code execution:

conda deactivate
conda env remove -n CIKM
conda create -n CIKM -y
conda activate CIKM 
conda install python==3.10 -y
pip install tensorflow-gpu==2.10.0
pip install tqdm
pip install tables
pip install scipy==1.10.1
pip install pandas==1.5.3
pip install numpy==1.23.5

python train.py --model_name=MyUAGCRN --dataset=metr-la --Q=12 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCRN --dataset=pems-bay --Q=12 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCRN --dataset=pemsd7 --Q=9 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCTransformer --dataset=metr-la --Q=12 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCTransformer --dataset=pems-bay --Q=12 --activity_embedding --sensor_embedding --graph_type=cooccur_dist
python train.py --model_name=MyUAGCTransformer --dataset=pemsd7 --Q=9 --activity_embedding --sensor_embedding --graph_type=cooccur_dist

Dataset

Traffic Dataset

Traffic Dataset Description

DATASETNSpeed (miles/hour)DatasizePLACEDURATIONINTERVAL
METR_LA20754 ± 2034,249Los Angeles, USAMar. 1, 2012 – Jun. 27, 20125min
PEMS_BAY32562 ± 1052,093San Francisco Bay Area, USAJan. 1, 2017 – Jun. 30, 20175min
PEMSD722859 ± 1312,652Los Angeles, USAMay. 1, 2012 – Jun.30, 20125min

National Household Survey

Citation

To recognize the valuable role of National Household Travel Survey (NHTS) data in the transportation research process and to facilitate repeatability of the research, users of NHTS data are asked to formally acknowledge the data source. Where possible, this acknowledgement should take place in the form of a formal citation, such as when writing a research report, planning document, on-line article, and other publications. The citation can be formatted as follows: U.S. Department of Transportation, Federal Highway Administration, 2017 National Household Travel Survey. URL: http://nhts.ornl.gov.

Download page

Sensor Location Correction

Corrected sensor location with osm path files are found in

  • METR-LA: dataset/corrected-metr-la-sensorid-osm-path-uv.csv
  • PEMS-BAY: dataset/corrected-pemsbay-sensorid-osm-path-uv.csv
  • PEMSD7: dataset/corrected-pemsd7-sensorid-osm-path-uv.csv

METR-LA

Alt Text
Alt Text
Alt Text

PEMS-BAY

Alt Text
Alt Text
Alt Text

PEMSD7

Alt Text
Alt Text
Alt Text

Performance Comparison

Alt Text

Ablation Study

Alt Text

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top